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A recent claim by Bassi and Ghirardi that the consistent (decoherent) histories
approach cannot provide a realistic interpretation of quantum theory is shown
to be based upon a misunderstanding of the single-framework rule: they have
replaced the correct rule with a principle which directly contradicts it. It is their
assumptions, not those of the consistent histories approach, which lead to a
logical contradiction.
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1. INTRODUCTION

The first paper on the consistent histories (CH) interpretation of quantum
theory was published in the Journal of Statistical Physics in 1984.(1) In the
years since then this approach, sometimes called ``decoherent histories,'' has
been refined and extended in several books and papers, of which some
of the more significant are refs. 2�7. It provides a realistic picture of
the atomic realm without the need to invoke quantum measurement as a
fundamental principle, and for this reason it can resolve the ``measurement
problem''(8) (there are actually two measurement problems, see ref. 9)
which has long beset attempts to place the foundations of quantum theory
on a sound basis, and which probably cannot be dealt with consistently by
traditional methods.(10) Because it resolves various quantum paradoxes(1, 11)

using an analysis based upon the mathematics of Hilbert space, the CH
approach removes any need to look for alternatives to standard quantum
theory, such as those found in the hidden-variables approach of de Broglie
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and Bohm, (12) or in the spontaneous reduction ideas of Ghirardi, Rimini,
Weber, and Pearle.(13)

There have, to be sure, been a number of criticisms of the CH
approach, and these have proven helpful in constructing improved versions
of the formalism, and better expositions of its physical interpretation. The
most significant of these criticisms are discussed in ref. 6, and reasons are
given why they do not invalidate CH quantum theory. This reference
provides the material needed to counter various claims, such as in ref. 14,
that the CH approach is logically inconsistent or unsound. In this connection
it is worth pointing out that even one of its severest critics has admitted
that the CH approach is logically consistent when its rules are properly
followed.(15)

One of these rules, known as the single framework (or single family,
single logic, or single set) rule, plays a central role in the CH approach,
as has been repeatedly emphasized in various publications.(4�7) Despite the
extensive discussion of this rule in the CH literature, accompanied by
numerous applications to specific problems, it is still sometimes misunder-
stood, as in some recent work by Bassi and Ghirardi.(16�18) In particular,
these authors have claimed, in an article(17) appearing in this Journal, that
the CH interpretation of quantum theory when interpreted in a realistic
way using some reasonable assumptions leads to contradictions in the
sense of violating a result of Bell, (19) and Kochen and Specker.(20) On the
face of it this seems rather surprising. The Bell�Kochen�Specker result
shows that a certain type of hidden-variables approach to quantum theory
can lead to a contradiction because it makes assumptions incompatible
with the structure of Hilbert space. On the other hand, the CH interpreta-
tion has been explicitly constructed to take account of the structure of
Hilbert space, and does not rely on hidden variables in any way.

Closer examination shows that the Bassi and Ghirardi argument
violates the single-framework rule, and thus the claimed contradiction with
Bell�Kochen�Specker is not a consequence of the principles of the CH
approach, but is instead due to Bassi and Ghirardi's having rejected those
principles. This was pointed out in ref. 21 in response to ref. 16, but since
ref. 17 is considerably longer and also somewhat clearer than ref. 16, raises
the issue in a some-what different way, and has appeared in a different
journal, a separate reply to it seems appropriate. The present article, in
order to be self-contained, contains a certain amount of overlap with
ref. 21.

Since the arguments in ref. 17 (as in ref. 16) deal entirely with the
Hilbert space description of a system at a single time, most of the formal
machinery of the CH approach��histories, consistency, and assignment of
probabilities by use of the time-dependent Schro� dinger equation��is not
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needed for the following discussion. The essential point we wish to make is
that a quantum Hilbert space differs in crucial respects from a classical
phase space, and this mathematical difference must be reflected in any valid
physical interpretation of quantum theory. Importing ``intuitively obvious''
ideas of classical physics into quantum mechanics without paying adequate
attention to the mathematical structure of the latter, in direct contradiction
to the rules of the CH interpretation, is what has given rise to the con-
tradiction noted by Bassi and Ghirardi, as we shall show.

Before dealing with the main issue, we need to indicate the connection
between truth functionals��our name for the homomorphisms denoted by
h in ref. 17��and certain elementary concepts from standard probability
theory. This is done in Section 2, and the quantum counterparts of truth
functionals and probability concepts are taken up in Section 3, along with
the single-framework rule. In Section 4 we show that in their argument
Bassi and Ghirardi have mistakenly replaced the single-framework rule
with what we call the every-framework principle, which is not only not the
same as the single-framework rule, but stands in direct contradiction to it;
for this reason their argument has basically nothing to do with CH quan-
tum theory. Section 5 responds to some other less-important issues in
ref. 17, and Section 6 has a brief conclusion.

2. SAMPLE SPACES AND TRUTH FUNCTIONALS

A basic concept in elementary probability theory is that of a sample
space. According to Feller, (22) the possible outcomes of an idealized experi-
ment correspond to precisely one and only one point of the sample space.
If a coin is tossed, the sample space consists of two possibilities, H and T;
if a die is rolled, there are six points in the sample space. Before the
idealized experiment is carried out one does not, in general, know what the
outcome will be, but when it has taken place, one and only one of the out-
comes actually occurs, i.e., is the true result of the experiment. The books
on probability theory with which I am familiar do not seem to employ the
terms ``true'' and ``false,'' but the way in which they define a sample space
justifies the association of ``true'' with the sample point that represents the
actual outcome, and ``false'' with all the others. In addition, Feller dis-
tinguishes simple events, the elements of the sample space, from compound
events which are associated with some subset of the elements of the sample
space. A compound event is ``true'' if it contains the point of the sample
space which actually occurs, and is ``false'' otherwise.

Rather than the terminology of ordinary probability theory, ref. 17
uses what I call a truth functional: a homomorphism (there denoted by h)
from a Boolean algebra of events to the set [0, 1], also thought of as a
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Boolean algebra. In light of the preceding remarks, the connection of a
sample space, and its corresponding event algebra, to a system of truth
functionals can be explained in the following way. Let S be the sample
space, and P be some subset of S, thus a compound event in Feller's ter-
minology. The indicator P of P is a function on S taking the value 1 at
all points which lie in P and 0 at all other points of S. The usual Boolean
algebra of subsets of S is then isomorphic to a Boolean algebra B of
indicator functions in which the greatest element is the function I, equal to
1 at all points of S; the least element is 0, equal to 0 everywhere; the com-
plement of an indicator P is I&P; the join P & Q of two indicators is their
product PQ; and the meet P _ Q is the indicator P+Q&PQ.

A truth functional % is then a function which assigns to each indicator
in the algebra B either the value 1 (true) or 0 (false) in a way which
satisfies the following three conditions:

%(I )=1, %(I&P)=1&%(P), %(PQ)=%(P) %(Q) (1)

It is not hard to show that any such function is necessarily of the form

%q(P)=P(q)={1
0

if q # P

if q � P
(2)

where q is some point in the sample space S. One should think of %q as
the truth functional appropriate for the case in which the sample point q
actually occurs, or is true, since it then assigns the value 1 (true) to every
compound event which contains q, and 0 (false) to the ones which do not
contain q. If the sample space is discrete, one can think of %q(P) in
probabilistic terms as the conditional probability of P given q, assuming
the probability of q is greater than zero, so that the conditional probability
is defined. It is in this sense, among others, that one can say that ``true'' is
associated with a (conditional) probability of 1, and ``false'' with probabil-
ity 0, in a probabilistic theory.

This approach can be employed in classical statistical mechanics in
the following way. Let # be a representative point of the phase space 1.
A physical property P of the system corresponds to the subset P of 1 con-
sisting of those points # for which this property is true. The corresponding
indicator P(#) is 1 whenever # is in P, and 0 otherwise. For example, if P
is the property that the total energy of a one-dimensional harmonic
oscillator is less than some constant E0 , P is the region inside an
appropriate ellipse in the x, p plane (x the position, p the momentum), and
P(#) is 1 for # inside and 0 for # outside this ellipse.
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Now consider a coarse graining of the phase space into a collection D

of N non-overlapping regions or ``cells.'' We can write the identity indicator
I (equal to 1 for all #) in the form

I= :
N

j=1

Dj (3)

where Dj is the indicator corresponding to the j th cell. Since the cells do
not overlap it follows that

Dj Dk=$ jkDj (4)

consistent with the obvious fact that I 2=I. The set of 2N indicators which
can be written as

P= :
N

j=1

?jDj (5)

with ?j is either 0 or 1, form a Boolean algebra B using the definitions of
complement, meet, and join introduced earlier. A truth functional % is a
function on B taking the values 0 or 1 in a way which satisfies (1), so it
has the form

%k(P)={1
0

if PDk=Dk

if PDk=0
(6)

where Dk is one of the elements of (3). Note that the collection D of cells
constitutes a sample space, because in any given ``experiment'' the phase
point # representing the system will be in one and only one of the cells. The
truth functional %k corresponds to the case in which the phase point # is
somewhere in the cell Dk ; it assigns the value 1 to all collections of cells
whose union contains the phase point, and 0 to all others. One can again
interpret %k(P) as a conditional probability, assuming that the probability
assigned to Dk is positive.

Notice that it is because we are assuming that P is of the form (5) that
the product P Dk must have one of the two forms on the right side of (6):
no property of the form (5) can include part but not all of some cell Dk .
Consequently, (6) defines a truth functional for indicators belonging to this
particular algebra B, but not for all possible properties; in this sense a
truth functional is relative to a particular coarse graining D, or its Boolean
algebra B. However, in classical mechanics it is possible to construct a
universal truth functional which is not limited to a single Boolean algebra,
but which will assign 0 or 1 to any indicator on the classical phase space
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in a manner which satisfies (1). To do this, choose some point #q in 1, and
let

%q(P)=P(#q) (7)

That is, %q assigns the value 1 to any property which contains the point #q ,
and 0 to any property which does not contain this point, in agreement with
how one would normally understand ``true'' in a case in which the state of
the system is correctly described by the phase point #q .

3. QUANTUM TRUTH FUNCTIONALS AND THE SINGLE
FAMILY RULE

The quantum counterpart of a classical phase space is a Hilbert
space H. For our purposes it suffices to consider cases in which H is of
finite dimension, thus avoiding the mathematical complications of infinite-
dimensional spaces. Following von Neumann, (23) we associate a quantum
property, the counterpart of a set of points in the classical phase space,
with a linear subspace P of H, or the corresponding orthogonal projection
operator or projector P onto this subspace. If I is the identity operator, the
negation of a property P corresponds to the projector I&P, and the con-
junction P 7Q of two properties corresponds to the projector PQ in the
case in which P and Q commute with each other. If PQ{QP, then neither
PQ nor QP is a projector, so there is no obvious way to define a property
corresponding to the conjunction, an issue to which we shall return.

The quantum counterpart of a coarse graining of a classical phase
space is a decomposition D of the identity, a collection of mutually orthog-
onal projectors [Dj ] satisfying (4) whose sum is the identity, as in (3). This
decomposition gives rise to a set of projectors of the form (5), all of which
commute with each other, and which form a Boolean algebra B analogous
to the algebra of classical indicator functions. One can define a quantum
truth functional % on the elements of B in the manner indicated previously:
it assigns to every projector P in B a value 0 or 1 in a way which satisfies
the three conditions in (1). Once again, any truth functional of this type
can be written in the form (6) for some k, and thus there is a one-to-one
correspondence between truth functionals and the elements of D, which
one can think of as the quantum version of a sample space.

The CH approach to quantum theory is ``realistic'' in the sense that it
treats the members of a particular decomposition of the identity, a quan-
tum sample space, as mutually exclusive possibilities, one and only one of
which occurs, or is true, for a particular physical system at a particular
instant of time, in precisely the same sense as in classical statistical
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mechanics. The difference between quantum and classical physics emerges
not when one considers a single quantum sample space, but when one asks
about the relationship between two or more different sample spaces. Here
quantum theory is very different from classical physics because the product
of two quantum projectors P and Q on the same Hilbert space can depend
upon the order, and when PQ is unequal to QP, neither of these products
is a projector. By contrast, the product of two indicators on the same
classical phase space is always an indicator, since multiplication is com-
mutative. For example, for a spin-half particle with components of angular
momentum Sx , Sy , and Sz (in units of �), the projector for the property
Sx=+1�2, which is 1

2I+Sx , does not commute with 1
2I+Sz , the projector

for Sz=+1�2. Consequently, a key question in quantum theory, with no
counterpart in classical physics, is: How can one make sense out of the
conjunction of two quantum properties, such as Sx=+1�2 AND Sz=+1�2,
when the corresponding projectors do not commute with each other?

The answer of the consistent historian is that one cannot make sense
of Sx=+1�2 AND Sz=+1�2; it is a meaningless statement in the sense
that (CH) quantum theory assigns it no meaning. There are no hidden
variables, and thus there is a one-to-one correspondence between quantum
properties and subspaces of the Hilbert space in CH quantum theory. Since
every one-dimensional subspace of the two-dimensional Hilbert space H of
a spin-half particle corresponds to a spin in a particular direction, there is
no subspace left over which could plausibly represent the property
Sx=+1�2 AND Sz=+1�2. To be sure, one might assign to it the zero ele-
ment of H, a zero-dimensional subspace corresponding to the property
which is always false (analogous to the classical indicator which is 0
everywhere). This, in fact, was the proposal, for this particular situation, of
Birkhoff and von Neumann in their discussion of quantum logic.(24) It is
important to notice the difference between their approach and the one used
in CH. A proposition which is meaningful but false is very different from
a meaningless proposition: the negation of a false proposition is a true
proposition, whereas the negation of a meaningless proposition is equally
meaningless. The Birkhoff and von Neumann approach requires, as they
themselves pointed out, a modification of the ordinary rules of proposi-
tional logic, whereas the CH approach does not.2 However, in CH quan-
tum theory it then becomes necessary to exclude meaningless talk from
meaningful discussions, a task which is not altogether trivial.

Generalizing from this example, the CH approach requires that a
meaningful probabilistic description of a single quantum system at a par-
ticular time must employ a single framework: a single Boolean algebra
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of commuting projectors generated, in the sense of (5), from a specific
decomposition of the identity or quantum sample space. To be sure, many
alternative descriptions can be constructed using different decompositions of
the identity: the single-framework rule is certainly not intended to restrain
the imagination of theoretical physicists! However, combining results from
different sample spaces into a single description is forbidden by the single-
framework rule, apart from the following exception.

Two frameworks involving properties of a single system at a single
time (we are ignoring genuine histories, for which the rules are more com-
plex) are said to be compatible provided the two Boolean algebras are parts
of a single, larger Boolean algebra of commuting projectors. This is true if
and only if every projector belonging to one of the original algebras com-
mutes with every projector belonging to the other algebra, which in turn is
the same as requiring that the projectors from the two decompositions of
the identity, or sample spaces, commute with one another. A larger collec-
tion of frameworks is compatible if all pairs are compatible, and frame-
works are said to be mutually incompatible if they are not compatible.
Descriptions based upon two or more compatible frameworks can always
be combined by using the single Boolean algebra which contains all of the
different (mutually commuting) algebras, and thus one is still employing a
single framework, corresponding to a single decomposition of the identity,
in accordance with the single-framework rule.

The single-framework rule is not at all unreasonable from the perspec-
tive of elementary probability theory, where problems are generally set up
using a single sample space. Thus if a coin is to be tossed ten times in a
row, the statistical properties are worked out not by constructing ten
sample spaces, but by using a single sample space containing 210 points. The
single-framework rule is also perfectly compatible with classical statistical
mechanics, for if one uses two or more coarse grainings of the phase space,
the results can always be combined by means of a single coarse graining
which uses a collection of cells generated by intersections of other cells in
an obvious way. Thus ordinary probabilistic arguments and classical
statistical mechanics satisfy the single-framework rule, albeit in a somewhat
trivial sense.

As already noted, the single-framework rule as applied to Boolean
algebras of properties refers to a single system at a single instant of time.
Given two nominally identical systems, there is no reason why one cannot
use one framework for the first and a different framework for the second.
For instance, in the case of two spin-half particles, Sx=+1�2 could be a
correct description of one of them at the same time that Sz=+1�2 is a
correct description of the other. Similarly, the same particle may have
Sx=+1�2 at an earlier and Sz=+1�2 at a later time. Conversely, when
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incompatible frameworks turn up in some discussion of a quantum system,
it is best to think of them as referring to different systems, or to a single
system at different times, or perhaps simply as tentative or hypothetical
proposals without any suggestion that they should be taken in a realistic
sense. (Ascribing properties to a single system at more than one time
requires the use of a history, and this requires additional considerations
which lie outside the scope of the present discussion.)

In any application of probability theory, precisely one of the elements
of the sample space is thought of as existing, or ``true'' in any realization
of an ideal experiment. In this sense the notion of ``truth'' in a probabilistic
theory is necessarily connected with, and thus depends upon the sample
space or framework one is considering. In classical physics one can forget
about this dependence, because if more than one framework is under con-
sideration, in the case of a single system at a single time, they can always
be combined into a single framework. This is reflected in the fact that one
can always define a universal truth functional for a classical phase space,
as noted in Section 2. Because of the possibility that frameworks can be
incompatible, the framework dependence of ``true'' is not at all trivial in
quantum physics; indeed, one might say that this is one of the main ways
in which the mathematical structure of quantum theory forces one to adopt
a different kind of physical interpretation from what one is used to in
classical mechanics.

In particular, in quantum theory there is no universal truth functional
%q which can be used to assign values of 0 and 1 to all projectors in a way
which agrees with the three conditions in (1). In a certain sense this is
immediately obvious for any Hilbert space of dimension 2 or more, since
in such a space there will always be projectors P and Q which do not com-
mute with each other. In such a case PQ is not a projector, and the third
condition in (1) is not even defined, much less satisfied. One might hope to
get around this problem by modifying the third condition and only requir-
ing that it hold in cases in which P and Q commute with each other. This,
however, gains very little, for the results of Bell and of Kochen and Specker
referred to earlier demonstrate that even such a ``modified'' universal truth
functional does not exist for a Hilbert space of dimension 3 or more.
(A simple example due to Mermin, showing the impossibility of a universal
truth functional in a Hilbert space of dimension 4, is discussed in ref. 21.)

The absence of a universal truth functional causes no difficulties for
CH quantum theory because of the single-framework rule, which prevents
the comparison of incompatible frameworks. The situation is different for
the alternative principle proposed by Bassi and Ghirardi, which they have
somehow managed to confuse with the single-framework rule, and which
will be taken up next.

1417Consistent Quantum Realism: A Reply to Bassi and Ghirardi



4. THE EVERY-FRAMEWORK PRINCIPLE OF
BASSI AND GHIRARDI

In ref. 17 Bassi and Ghirardi introduce, in the discussion leading up to
and including their (6.1), what I shall call the ``every-framework principle,''
which in the notation of the present paper can be stated in the following
way.

Consider a quantum Hilbert space, and let [Df ] be the different
possible decompositions of the identity, where f is a label which takes on
uncountably many values. For example, for a spin-half particle, f will run
over all directions in space w, as long as +w is identified with &w, since
each decomposition of the identity corresponds to a sample space with just
the two points Sw=\1�2. Corresponding to Df there is a corresponding
Boolean algebra Bf of projectors of the form (5). Given a projector P, we
define

F(P)=[ f : P # Bf ] (8)

to be the collection of labels such that P is a member of the Boolean
algebra Bf .

The every-framework principle asserts that there is a collection of truth
functionals [%f ], one for each decomposition of the identity, with the
following property: if P is any projector in the Hilbert space, the value of
%f (P) is the same for all f in F(P). That is to say, P is assigned precisely
the same truth value, 0 or 1, by all members of the collection [%f ] for
which %f (P) is actually defined.

The every-framework principle has a certain intuitive appeal when one
is thinking of a single system at a single time. It is actually correct for
classical statistical mechanics, where a property P is true as long as the
representative phase point # is inside the corresponding set P, and false
otherwise. Hence to construct a collection of truth functionals, associated
with a collection of coarse grainings, satisfying the every-framework prin-
ciple, one simply chooses some representative point #q in the phase space,
and for a coarse graining Df lets the indicator for the cell which contains
#q play the role of the special Dk in (6). Or, to put the matter in a slightly
different way, one simply lets %f be the restriction to Bf of the universal
truth functional defined in (7).

Given this result, one is not surprised to learn that the quantum-
mechanical version of the every-framework principle implies the existence
of a universal truth functional %u of the modified form discussed towards
the end of Section 3. For each P, one sets %u(P) equal to the common value
specified by the every-framework principle, noting that every P is contained
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in at least one decomposition of the identity, that consisting of P and I&P.
Since when restricted to the Boolean algebra Bf the functional %u is identi-
cal to %f , it is at once evident that the first two requirements in (1) will
always be satisfied, while the third will be satisfied in cases in which P and
Q commute, since there is then at least one Boolean algebra Bg which con-
tains both of them, and %u when restricted to Bg is the same as the corre-
sponding truth functional %g .

But, as we have already noted, the nonexistence of a universal truth
functional has been proven mathematically for any Hilbert space of dimen-
sion greater than two. Consequently, the every-framework principle is in
clear contradiction with the principles of quantum mechanics. The proofs of
this fact given in refs. 16 and 17 are correct but superfluous; they simply
repeat what is already well known to people who work in the foundations
of quantum theory.

What is the relationship of the every-framework principle and the
single-framework rule? They are mutually contradictory, for fairly obvious
reasons. The every-framework principle requires us to compare the results
of truth functionals, or equivalently sample spaces, associated with different
and in general incompatible frameworks, in precisely the manner forbidden
by the single-framework rule. According to the latter, such a comparison
makes no sense in the case of incompatible frameworks. (Note that it is
only with the help of incompatible frameworks that one can reach a
contradiction using the Bell�Kochen�Specker approach, so incompatible
frameworks are essential to the argument in ref. 17.) To be sure, two dif-
ferent frameworks might refer to two different systems (or the same system
at two different times), but in that case there is no reason whatsoever to
expect that a particular property has the same truth value for the two
systems, and thus no motivation for invoking the every-framework principle.

One must admit that the every-framework principle has a certain
intuitive appeal: how could the truth value of some physical property
possible depend upon the sample space in which it is embedded? Surely if
it is true it is really true, apart from anything one can say about the rest
of the world, and if it is false it is false! This appeal is seductive because
it focuses attention on the physical property rather than on the sample
space. When, however, one pays attention to the latter, things appear in
a quite different light. Let us consider as an example two incompatible
quantum sample spaces

S1=[A, B, C ] S2=[A, D, E ] (9)

where A, B, and C are three projectors which add up to I, and likewise
A+D+E=I. However, neither B nor C commutes with either D or E.
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Let us employ the every-framework principle, and suppose that A is
false in both S1 and S2 . Because S1 is a sample space, this means that
either B or C is true, and because S2 is a sample space, either D or E must
be true. Suppose for the sake of argument that it is B which is true in S1

and D which is true in S2 . Then if we insist that S1 and S2 apply to the
same system at the same dine, this means that two properties represented
by non-commuting projectors are simultaneously true. For example, they
could be Sx=+1�2 and Sz=+1�2 for a spin-half particle. This is hard to
reconcile with the Hilbert space structure of ordinary quantum mechanics,
as pointed out in Section 3, and in CH quantum theory it is forbidden by
the single-framework rule. Thus we see that when A is false, the every-
framework principle has certain implications which, when brought to light,
make it much less appealing.

The case in which A is true in both S1 and S2 also leads to unsatisfac-
tory results. Because S1 and S2 are sample spaces, the truth of A means
that all four properties B, C, D, and E are false. One might be tempted to
suppose that the falsity of two incompatible properties is unproblemati-
cal��after all, who cares about things which do not occur? The trouble is
that when B is false, its negation B� =I&B is true. Furthermore, if two pro-
jectors B and E do not commute, the same is true of their negations B� and
E� =I&E. Thus using the every-framework principle once again leads to
the conclusion that two properties represented by non-commuting
operators are simultaneously true. In summary, whatever may be its initial
intuitive appeal, much of the allure of the every-framework principle vanishes
when one realizes what it really means.

Let us look at this example from a slightly different perspective, by
introducing a third sample space

S0=[A, A� =I&A] (10)

containing only A and its negation. This is obviously the smallest sample
space in which ``A is true'' and ``A is false'' make sense. The sample space
S0 is compatible with both S1 and with S2 , each of which represents a
refinement of S0 . The rules of quantum reasoning employed in ref. 5 allow
one to deduce that if A is true�false in S0 , then it is also true�false in S1 ,
and the same deduction is possible going from S0 to S2 . However, the
single-framework rule prevents combining these results in a single descrip-
tion: one cannot employ both S1 and S2 for the same system at the same
time, for the reasons indicated previously. This means that at least some of
the intuitive appeal which seems to lie behind the every-framework prin-
ciple, the notion that the truth of some property should not depend upon
what else is going on in the world, is supported in CH quantum theory.
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And this can be done in a consistent way without leading to any logical
contradictions precisely because the CH approach employs the single-
framework rule rather than the every-framework principle.

The single-framework rule and the every-framework principle are,
thus, completely incompatible with each other, whether one regards them
either from a purely formal perspective��the former forbids combinations
which the latter allows��or in terms of their intuitive significance. Hence
one can only regard with astonishment the claim of Bassi and Ghirardi,
found in the very next sentence after their (6.1), that the every-framework
principle constitutes the ``only reasonable way'' to interpret the single-
framework rule! It is hard to imagine a more serious misunderstanding of
a rule that has been stated over and over again in the literature on CH
quantum theory, and illustrated by means of numerous examples. Discus-
sions and criticisms of the single-framework rule can be a valuable compo-
nent of the scientific enterprise. But to introduce a new principle which is
not only different from, but directly contrary to the single-framework rule,
and then claim that the former is the only reasonable way to interpret the
latter does nothing but cause confusion.

5. SOME OTHER ISSUES

Aside from the every-framework principle, there are some other points
in ref. 17 (and also ref. 18) which merit at least a brief response.

v In Sections 4 and 9 of ref. 17, Bassi and Ghirardi assert that what
I call MQS (macroscopic quantum superposition) states��for example,
Schro� dinger's infamous cat��are physically unacceptable, and fault the CH
approach for not providing some criterion for excluding them.

In response, it will help to use an analogy from classical physics, while
remembering that any classical analogy can only go part way in helping us
understand quantum phenomena. A coin spontaneously rising a centimeter
above a table on which it is sitting at rest is physically unacceptable in the
sense that such a violation of the second law of thermodynamics is never
observed to occur, despite the fact that nothing in the laws of classical
mechanics excludes such a possibility. We understand why we never observe
such things by using statistical mechanics, which assigns an extremely small
probability to such an event. That is, we have a scientific understanding of
why violations of the second law are not observed, despite the fact that the
laws of classical (and also quantum) mechanics permit such possibilities.

The quantum Hilbert space certainly contains MQS states, because it
is, by definition, a linear vector space-which includes superpositions of any
of its elements. However, MQS states are incompatible, in the quantum
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sense, with the quasi-classical framework(s)(3) needed to describe our
ordinary experience with macroscopic objects. Thus the single-framework
rule tells us that it makes no sense trying to include MQS states in descrip-
tions of the everyday world of human experience. Conversely, if a quantum
description employs the MQS state that is (formally) a linear superposition
of a live and dead cat, it makes no sense, according to the single-frame-
work rule, to think of the whatever-it-is as somehow involving a cat, for
the properties typically used to identify a cat will, in quantum theory, be
represented by projectors which do not commute with the MQS state, and
are therefore of no use for discussing the meaning of such a state. In
this sense, at least, CH quantum theory does provide criteria for excluding
MQS states from certain types of quantum descriptions. Quantum
physicists who refuse to employ the single-framework rule must, of course,
find some other means of disposing of, or perhaps peacefully coexisting
with MQS states. It is also worth noting that the reason quantum super-
positions states of this sort cannot be detected in the laboratory, even for
microscopic objects, as long as they contain a substantial number of atoms,
is by now reasonably well understood in terms of the process of decoher-
ence, a topic which has been treated from the CH perspective by Omne� s.(7)

(Decoherence is much like classical irreversibility, making the jumping coin
an even better analogy.) To summarize the situation, CH quantum theory
certainly permits descriptions using MQS states, but at the same time
provides an explanation as to why they are neither needed nor particularly
useful for a science of the macroscopic world.

v In a not unrelated point, Bassi and Ghirardi suggest that one may
be able to get around the difficulties they have encountered by employing
their every-framework rule by making a drastic reduction in the set of
consistent families which can be considered to be physically significant.

In response, there is nothing wrong with these authors announcing a
direction for their future research, as long as they make it plain that the
motivation for it comes not from any problem involving the CH approach,
but rather from the disagreement between their every-framework principle
(itself completely contrary to the CH single-framework rule) and standard
quantum theory. No proposal for using a restricted class of families in
the manner they propose has thus far turned out to be very useful for
quantum interpretation, but no doubt those who consider this a worth-
while approach will continue the search.

v Bassi and Ghirardi take the position, both in Section 6 of ref. 17 and
in ref. 18, that the only alternative to their every-framework principle in
which any property P has the precisely the same truth value in every
framework which contains it, is to suppose that in certain of frameworks
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it is true and in other frameworks it is false, something they consider unac-
ceptable.

The response to this is contained in the material in Section 4 above,
but it may be worthwhile making it quite explicit. From the CH perspec-
tive, using two incompatible frameworks to describe the same system at the
same time is not meaningful��this is precisely the point of the single-family
rule. Since meaningless truth values are meaningless, there is no reason to
be concerned about whether they agree or disagree. Alternatively, one can
suppose that two incompatible frameworks do not refer to the same system
at the same time. In that case, there is no a priori reason to expect the
truth values for a particular property to be the same, and so no reason to
be worried if they are different.

v In ref. 18 Bassi and Ghirardi assert that in the previous literature
on consistent histories the single-framework rule was not explained well
enough or clearly enough so as to obviously exclude their every-framework
principle.

It is quite true that the language of truth functionals was not
employed by consistent historians (so far as I am aware) prior to the recent
ref. 21. Previous work used the standard language of elementary probabil-
ity theory, with its sample spaces and event algebras, and assumed the
usual association between probability theory and reality, as pointed out,
for example, in Section 7.2.3 of ref. 1. A basic understanding of how sample
spaces function in ordinary probability theory is all that one really needs
in order to understand the CH approach and the significance of the single-
framework rule, including the fact that it is quite contrary to the every-
framework principle. The use of truth functionals, while it may be advan-
tageous for some purposes, is not actually needed.

v At the beginning of Section 7.1 in ref. 17, Bassi and Ghirardi, in a
footnote, issue a challenge to me and an anonymous referee to identify
which of their four precisely formulated (in their opinion) assumptions are
inconsistent with the CH single-framework rule, and accept the consequen-
ces of this identification.

In fact these four assumptions are not precisely formulated, as was
pointed out in ref. 21. Writing in response to that, Bassi and Ghirardi(18)

have themselves identified their assumption (c) as the one which is incom-
patible with the single-framework rule, and I see no reason to dispute this.
That rejecting their (c)��the every-framework principle��leads to dire con-
sequences is not true, as should be clear from the discussion in Section 4
above. Instead, it allows a sensible discussion of quantum properties using
consistent quantum principles.
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6. CONCLUSION

In ref. 17 Bassi and Ghirardi have, in essence, substituted their every-
framework principle for the single-framework rule of CH quantum theory,
and then concluded, correctly, that the every-framework principle makes
no sense in the quantum world. Their only mistake is in supposing that the
every-framework principle has something to do with CH quantum theory,
whereas in fact the two are directly contrary to each other. While this error
is easily spotted by someone who is familiar with CH methods, it is none-
theless regrettable that others less familiar with them have, once again,
been given the mistaken impression that there is something logically
unsound, or at least suspicious, about CH quantum theory.

To be sure, Bassi and Ghirardi and other critics of CH perform a
valuable function in looking for flaws in this approach. Their failure (at
least thus far) to find anything wrong with CH, while at the same time
demonstrating that the various alternatives that they propose posses
serious flaws, adds to one's confidence that the CH approach does, in fact,
provide a satisfactory realistic interpretation of quantum theory.
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